
.-

Modbus’” ”
Application Specific Function Block Manual

GIDDINCS & LEWIS@

NOTE

Progress is an ongoing commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change
without notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall
not be liable for any technical or editorial omissions occurring in this document, nor for any
consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is
completely understood. It is the responsibility of the user to make certain proper operation practices
are understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 666 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (414) 921-7100.

401-55378-00

Version 2 - 1497

0 1993 - 1997 Giddings & Lewis, Inc. DB2-3469

Modbus, 984, BM85, S985,685 are trademarks of the Modicon Company.
IBM@ is a registered trademark of International Business Machines Corporation
IBM AT is a trademark of International Business Machines Corporation
PiC900, PiC90, and PiCPro are registered trademarks of Giddings & Lewis, Inc.

BA2244a9

Table of Contents

Application Specific Function Block Guidelines
Installation ..
Revisions ..
ASFB Input/Output Descriptions ...
Using ASFBs ..

Modbus ASFB Software Package

1.1 Introduction ...
Background on Modbus protocol ...

1.2 Requirements ..
Hardware requirements ..
Cable connections ..
Software requirements ..
Compatibility ..

1.3 Installation ..
1.4 Modbus Function Block ..

C-MODMST ..
The ASCII Mode ..
The RTU Mode ..
Modbus Master ..

’Modbus master example LDO ..
C-MODMST function block setup ..
C-MODSLV ..
The ASCII Mode ..
The RTU Mode ..
Modbus Slave ...
Modbus slave example LDO ..
C-MODSLV function block setup ...

. Index

5
6
8
8
8
9
9

11
12
13
17
3.8
21
22
25
26
29
30
31
32
34

Table of Contents 1

NOTES

2 Table of Contents

Awlication Specific Function Block Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (ASFBs) from Giddings & Lewis.

1. Make a back up copy of the ASFB disk you receive and store the original
in a safe place.

2. The disk you receive with the ASFB package will include the following:
1. ASFBS directory containing:

l .LIB file(s) containing the ASFB(s)
l source .LDO(s) from which the ASFB(s) was made

2. EXAMPLES directory containing:
l example LDO(s) with the ASFB(s) incorporated into the ladder

which you can then use to begin programming from or merge with
an existing application ladder

It is recommended that you copy the .LIB and the source LDO files to
your hard drive on the PC in the following way. Remember that ASFB
libraries (.LIB) files and source (.LDO) files must be kept in the same
directory.
l Create a directory that will hold all ASFB LIBs and source LDOs.

For example, you may have the Motion ASFB package and the
Communication ASFB package. Copy the appropriate files on the
disks to a directory on your PC called ASFB.
When you installed PiCPro, the PiCLib statement was automatically
entered in your autoexec.bat file as shown below:

SET PICLIB=C:\PICLIB
NOTE: If you chose to alter your PICLIB statement during
installation, it will look different than what appears above.
Now add the ASFB directory to your PICLIB = statement as shown
below:

SET PICLIB=C:\PICLIB;C:\ASFB
l Put the example file(s) in your working directory.

For example, if you always run PiCPro from the directory which holds
all your LDO files, then copy all the ASFB example LDOs to the LDO
directory.

Application Specific Function Block Guidelines 1

Revisions

3. The first three networks of each ASFB source ladder provide the following
information.

Network 1
The first network is used to keep a revision history of the ASFB. Revisions
can be made by Giddings & Lewis personnel or by you.
The network identifies the ASFB, lists the requirements for using this ASFB,
the name of the library the ASFB is stored in, and the revision history.
The revision history includes the date, ASFB version (see below), the
version of PiCPro used while making the ASFB, and comments about what
the revision involved.
When an ASFB is revised, the number of the first input (EN or RQ- 3
to the function block is changed in the software declarationst~ble. The
range of numbers available for Giddings & Lewis personnel is 00 to 49.
The range of numbers available for you is 50 to 99. See chart below.

Revision

1st EN00
2nd EN01

50th

Giddings & Lewis
revisions

.

.

EN49

User
revisions

EN50
EN51

EN99

Network 1
I...1 f......
X-Name ASFB Source Revision History

Located in Library X-LIB

Requirements:
PiCPro Ver 4.0 or higher

Date
- - - -
MM-DD-YY

Version Using PiCPro Comments
- - - - - - - -----__-_-__ - - - - - - - -

EN00 4.1 Original

2 Application Specific Function Block Guidelines

Network 2
The second network describes what you should do if you want to make a
revision to the ASFB.

1..

If you revise the ASFB, do the following:

1. Do a ‘M’odule, save ‘A’s in order to save the original ASFB before
you begin modifying.

2. Change the number on the first input to the ASFB in the software
declarations table to a 50 or greater (for example, EN00 would be
changed to EN50).

3. Update the revision history in network 1.

ASFB Input/Output Descriptions

Network 3
The third network describes the ASFB and defines all the inputs and
outputs to the function block.

ASFB Description

INPUTS:

Name Data Type
- - - - - - - - - - - - -
EN00 BOOL

OUTPUTS:

Name Data Type
- - - - ------_--
OK BOOL

De f i n i t i on
------__
enables execution

Definition

execution complete

Application Specific Function Block Guidelines 3

Using ASFBs

4. When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.
l Create a new application LDO starting with the example LDO for the

ASFB package. The advantage is that the software declarations table
for the ASFB has been entered for you.
NOTE: To keep the original example LDO, use the ‘save As’
command. This copies the example LDO to an LDO with the
application name you give it.

l If you already have an application LDO, merge the example LDO with
the application LDO using the optional LDOMERGE software
package. The software declaration tables for both LDOs will also
merge.

l Enter the ASFB into your application LDO.
NOTE: This method is not recommended if the software declarations
table is lengthy. It requires that you manually enter all the inputs and
outputs to the ASFB in the table. With some packages, this is time-
consuming. Any structure, array, array of structures, or strings must be
entered exactly as it appears in the original table. This is critical to the
correct functioning of the ASFB.

4 Application Specific Function Block Guidelines

Modbus ASFB Software Package

1 .I Introduction

The Modbus ASFB software package from Giddings & Lewis allows the PiC900 to
communicate as a Modbus master or slave using the Modbus protocol. The Modbus
protocol determines how each controller on a network will know its device address,
recognize a message addressed to it, determine the kind of action to be taken, and
extract any data or other information contained in the message. If a reply is required,
the PiC900 will construct the reply message and send it using Modbus protocol.

Communications is done using a master/slave mode. Only one device, the master,
can initiate a transaction called a query. The other devices, the slaves, respond with
the data requested by the master or by taking the action specified in the query.

The PiC900 is used as a master or slave device. Communication takes place through
the PiC900 serial ports. The serial ports include the USER PORT 2 on the CPU or
the ports on a PiC900 serial communications module (2 or 4 port models available).

The master is typically a host processor, an operator interface, or a PiC900. The
master can address individual slaves or can initiate a broadcast message to all slaves.
Slaves respond to queries that are addressed to them individually. Responses are not
returned to broadcast queries from the master. Some possible Modbus configurations
are shown in the block diagrams below.

Figure 1. Configurations for using Modbus communications

Basic connection

PiC900 used as a slave

Slave Master

PiC900
Modbus

RS-232 1PC (or smart
interface device)

PiC900 used as a master

Master Slave
, I I 1

L- I I

GD104933

Other possible connections

I I I I
984-685 Modbus

H

PiC900
(To MB Pius) (used as a slave)

--T--
Modbus Plus

pq rg - ;q
Modbus Modbus

Up to four PiCSOOs
PiC900 or other Modbus

(used as a slave) devices/networks

GDllJJSS3

The interface devices shown in the diagram are described below.

Modbus 5

984-685 Modicon controller
AT/MC-984 IBM ATTM/Modicon controller
MM1 Man Machine Interface
984 A5 Modicon controller
S985 Remote I/O bus
BM85 Bridge Multiplexer - Modbus Plus to Modbus bridge

Background on Modbus protocol

As shown below, the Modbus protocol establishes the format for the master query by
placing into the query message a device or broadcast address, a function code
defining the requested action, any data bytes to be sent, and an error-checking field.
The slave response message contains fields confirming the action taken, any data to
be returned, and an error-checking field.

If an error occurred in receipt of the message, or if the slave is unable to perform the
requested action, the slave will construct an error message and send it as its response.

The Master/Slave Query/Response Cycle

Query

Response
message
from the

slave
GD12-OT53

6 Modbus

Query

Response

The code in the query tells the addressed slave device what kind of action to
perform. The data bytes contain any additional information that the slave will
need to execute the command.
For example, code 03 will query the slave to read holding registers and respond
with their contents. The data field must contain the information telling the slave
which register to start at and how many registers to read. The error check field
provides a method for the slave to validate the query message.
If the slave makes a normal response, the code in the response is an echo of the
code in the query. The data bytes contain the data collected by the slave, such as
register values or status.
If an error occurs, the code is modified to indicate that the response is an error
response, and the data bytes contain a code that describes the error. The error
check field allows the master to confirm that the response message contents are
valid.

The Modbus software that allows the PiC900 to communicate using the Modbus
protocol includes the following ASFE5s that you install in PiCPro and use in your
application ladder.

C-MODMST

Communications-
Modbus master
Function block
Allows the PiC900 to
be used as a master
with the Modbus
protocol.

1C-MOCtlST-
-EN OK

-PORT FAIL

-CFG ERA

- BOOL COMP

-BSIZ TERR

-DATA CODE

-DSIZ

-EXPT

-ASCI

-SEND

- ADDR

-FUNC

-CNT

-LNDX

- RNDX

- BROD

C-MODSLV

Communications-
Modbus slave
function block
Allows the PiC900 to
be used as a slave with
the Modbus protocol.

C-MODSLV

-EN OK-

-ADDR FAIL-

-PORT ERR-

-CFG RCMD-

-BOOL

- BSIZ

-DATA

-DSIZ

-EXPT

-R

- ASCI

Modbus 7

1.2 Requirements

The hardware and software requirements when using the Modbus interface to
communicate with a compatible device are covered in this section.

Hardware requirements

l A PiC900 programmable industrial computer with approximately 1.3K of data
bytes free and approximately 11SK of ladder code bytes free.
NOTE: The number of free bytes can be
checked in the Download complete box in Download complete:

PiCPro. The box appears after you
download a ladder. An example is shown
on the right.

* Memory Usage *
69 of 8k data bits

2465 of 32k data bytes
220 ladder code bytes

27392 total code bytes

: Press any key to continue

l A serial port (either USER PORT 2 on the PiC900 CPU or one of four serial
ports on a serial communications module.)

l A serial cable to connect the PiC900 to the remote device.

Cable connections

The pinouts for the various Modbus communications connections are shown below.
Choose the one for your system.

PiC900 to an operator interface

PiC900 CPU to an operator interface
(1 O-pin screw terminal) (25-pin female)

GND 7 GND
RECV i 2 T&INS
TRANS 10 3 R E C V

PiC900 to a PC

PiC900 CPli
(1 O-pin screw terminal) (g-pin female)

GND 5 GND
RECV 9” 3 TRANS
TRANS 10 2 RECV

8 Modbus

Software requirements

l Modbus ASFB software
l PiCPro Version 4.1 or higher
l LDOMERGE software (Optional software that allows you to merge ladders.)

Compatibility

Function
Code

01
03
05
06
07

15 Force Multiple Coils

16 Preset Multiple
Registers

When the PiC900 is used as a Modbus slave, it responds to the following Modbus
commands:

Command Description

Read Coil Status
Read Holding Registers
Force Single Coil
Preset Single Register
‘Read Exception Status

Obtains current status (ON/OFF) of a group of logic coils.
Obtain current binary value in one or more holding registers.
Force logic coil to a state of ON or OFF.
Place a specific binary value into a holding register.
Obtain the status (ON/OFF) of the eight internal coils whose
addresses are controller dependent. You can program these
coils to indicate slave status. Short message length allows
rapid reading of status.
Forces a series of consecutive logic coils to defined ON or
OFF states.
Places specific binary values into a series of consecutive
holding registers.

The device the PiC900 is communicating with must also support these commands. If
the PiC900 receives a command it does not support or recognize, it will return an
error response to the sender.

Modbus 9

Function
Code

01

02

commands.

Command

Read Coil Status
Read Input Status

03 Read Holding Registers
04 Read Input Registers

05 Force Single Coil
06 Preset Single Register
07 Read Exception Status

15 Force Multiple Coils

16 Preset Multiple
Registers

The device the PiC900 is communicating with must support the commands the
PiC900 is going to generate. If the PiC900 sends a command the other device does
not recognize, it will respond with an error response.

When the PiC900 is used as a Modbus master, it responds to the following

Description

Obtains current status (ON/OFF) of a group of logic coils.
Obtain current status of the physical inputs (Inputs 10000 to
19999).
Obtain current binary value in one or more holding registers.
Obtain current value in one or more physical input registers
(Inputs 20000 to 29999).
Force logic coil to a state of ON or OFF.
Place a specific binary value into a holding register.
Obtain the status (ON/OFF) of the eight internal coils whose
addresses are controller dependent. You can program these
coils to indicate slave status. Short message length allows
rapid reading of status.
Forces a series of consecutive logic coils to defined ON or
OFF states.
Places specific binary values into a series of consecutive
holding registers.

Message Addressing

The addressing between the PiC900 and Modbus is as follows:

BOOLEANS I INTEGERS

lodbus PiC900 Modbus PiCSO(D

00001 BOOL(0) 40001 DAT(0r
00002 BOOLQ) 40002 DAT(1)

. . .

00999 BOOL(998) 40999 DAT(998
) -

10 Modbus

1.3 Installation

The Modbus software disk contains the files listed below. The Main group includes
the ASFB library (LIB), source ladders for the ASFBs (LDOs), and remark files
containing the comments in the source ladders (REMs). The Example group
includes the example LDO and REM files. The Auxiliary group contains the LIB,
LDOs, and REMs for the UDFBs used in the source ladders for the ASFBs.
NOTE: It should never be necessary for you to access any of the files in the
Auxiliary group. The LIB is required in order for the ASFB to work and the LDOs
allow you to view the source ladders when troubleshooting if necessary.

Follow the guidelines found at the beginning of the manual. Always make a back up
copy of the disk and store the original in a safe place. The recommended destination’
directory for each file is listed in the last column.

Group

Main

Zxample

4uxiliary

File

C-MOD.LIB

C-MODSLV.LDO

C-MODSLVREM

C-MODMST.LDO

C-MODMSTREM

C MASTEX.LDO
CIMASTEXREM

C MODEX.LDO
C:MODEX.REM

C-MODAUX.LIB

C MODCRC.LDO
C:MODCRC.REM

C MODMEM.LDO
CIMODMEMREM

C MODMOV.LDO
C:MODMOV.REM
C MODPAK.LDO
CIMODPAKREM

C MODUNP.LDO
C:MODUNP.P&M

Description Directory

The library containing the application specific ASFB
function block used to perform Modbus
communications.

The source ladder for the transceiver function ASFB
block.
The remark file for the source ladder ASFB

The source ladder for the C-MODMST
function block.

~ ASFB

The remark file for the source ladder ASFB

The example for Modbus master LDO from
which you can build a new application LDO or
to which you can merge an existing one.
The example for Modbus slave LDO from
which you can build a new application LDO or
to which you can merge an existing one.

Working

Working

The library that holds all the function blocks
I
ASFB

used in the source ladder for the ASFB.

Source ladder
Remark file

Source ladder
Remark file

Source ladder
Remark file

Source ladder
Remark file

Source ladder
Remark file

ASFB
ASFB

ASFB
ASFB

ASFB
ASFB

ASFB
ASFB

ASFB
ASFB

NOTE: The libraries containing the ASFBs and their source ladders must always be in
the same directory. If they are not in the same directory, PiCPro will not be able to find
the source ladder module when the View User function

Modbus 11

1.4 Modbus Function Blocks

The function block for the Modbus interface is described in this section. When
PiCFro is running, you can find the Modbus function blocks by choosing the
Function menu, then USER, then C-MOD as shown in Figure 2.

Figure 2. Location of ASFBs in PiCPro

Wires ContactsKoils Functions Data Jumps Horizontal Vertical Longname
. l......

Arith
Binary
Counters
Datatype
p$;;'e
IO
Motion

C-MODMST-

i
x EN Ok

The C-MOD library
contains the ASFB

C-MODSLV-

EN 01

ADDR FAIL

PORT ERF

CFG RCM[

BOOL

BSIZ

DATA

DSIZ

EXPT

R

ASCI

-PORT FAIL

-CFG ERF

- BOOL COMF

-BSIZ TERF

-DATA CODE

-DSIZ

-EXPT

-ASCI

-SEND

-ADDR

- FUNC

-CNT

-LNDX

-RNDX

-BROD

GO@34593

12 Modbus

I C-MODMST
USER/C-MOD I

Communi- ~C-MOM*~ST~ InPuts: EN (BOOL) - enables execution
cations-
Modbus
master

-EN 01

-PORT FAIL

-CFG ERF

BOOL COMF

BSIZ TERF

-I DATA CODE
-DSIZ

. EXPT

-ASCI

-SEND

-ADDR

! FUNCCNT

LNDX

RNDX

BROD

PORT (STRING) - identifies the communication serial
por t
CFG (STRING) - configuration string for the port
BOOL (ARRAY OF BOOL) - boolean data area
BSIZ (UINT) - size of the BOOL data area
DATA (ARRAY OF INT) - variable data area
DSIZ (UINT) - size of the DATA area
EXPT (ARRAY OF BOOL) - booleans read by the read
exception status code (07)
ASCI (BOOL) - selects ASCII mode if set; selects RTU
mode if not set
SEyeD (BOOL) - energize to send a message to a Modbus

ADDR (USINT) - address of the slave device to which
messages will be sent (range from l-255)
FUNC (USINT) - function code number to send to the
Modbus slave device
CNT (UINT) - number of items to transfer over Modbus
LNDX (UINT) - local index where data received from a
slave is stored
RNDX (UINT) - remote index where data will be
sent/retrieved in the slave device
BROD (BOOL) - set to send a broadcast frame

IMPORTANT
The C-MODMST function block cannot be used with the PiC911/912 or PiC90 CPUs. The serial
port on the EC186 processor in these CPUs is not compatible with the modbus protocol for a
master. These CPUs will work as slaves with the C-MODSLV function block.

Modbus 13

Outputs: OK (BOOL) - execution completed without error
FAIL (BOOL) - initialization failed
ERR (INT) - 0 if initialization is successful; # 0
if initialization is unsuccessful
RCMD (BOOL) - energized if a message is received
COMP (BOOL) - energized when a transfer is complete
TERR (BOOL) - an error occurred in the transaction
CODE (INT) - number of error code
code number 400 = error returned from a slave device
via an exception response
code number > 99 = local error

NOTE: C-MODMST function block cannot be used with the C-MODSLV function
block on the same serial port.
The C-MODMST function block provides PiC900 communication capabilities on a
Modbus network with the PiC900 acting as a Modbus master. The link to the
network must be made through one of the PiC900 serial ports.
When this function is enabled, it will open the PiC900 serial port specified at the
PORT input. This port will be configured based on the information specified at the
CFG input. If the port configures properly, the OK output will energize and the
system will be ready to generate requests as the Modbus master. If a problem occurs
in the open or configuration process, the FAIL output will be energized and the OK
will not be set. See Appendix B in the PiC900 software manual for the error codes
at the ERR output.
To establish communications on the Modbus network, this function block is needed
only once and should be enabled every scan.

14 Modbus

Inputs

EN The EN input is energized every scan to respond to a query over the Modbus
network.
rail.

In a typical system, this input will be wired to the vertical or power bus

PORT

NOTE: De-energizing this input will cause communication to stop.
The PORT input specifies which serial port this function block will use to
communicate over. Place a string type variable at this input that has been initialized
with the name of the port that is to be used.
For example, if the PiC900 User port 2 is being used, initialize a string as:

USER:$OO
If one of the channels on the serial communications module is being used, the
variable you enter at the NAMZ input of the ASSIGN function block is the variable
you enter at the PORT input of the C-MODMST function block.

MlW-3991

CFG The string variable at the CFG input holds the initialized configuration string you
will use.
If the RTU mode is chosen (see ASCI input), then the configuration string would
typically be:

9600, E, 8, 1, N, $00

The port will be set up at 9600 baud, even parity, 8 data bits, no handshaking. See
the OPEN function block description in the PiC900 Software Manual for more
information about this configuration string.
If the ASCII mode is chosen (see ASCI input), then the configuration string would
typically be :

9600, E, 7,2, N, $00

Modbus 15

BOOL The BOOL input is an array that specifies the boolean (bit) data area that is used for
any boolean (bit) transfers. Queries to a slave device for data items 00001 to 09999
are placed here.
For example, if the array of boolean variables is called BOOL and a write request is
made from register 00222, the PiC900 would send the data in BOOL(221).
The array size can range from 2 (O..l)to 999 (0..998) booleans.

IMPORTANT
Do not use a positive or negative transistional contact in your LDO with the BOOL array.

If it is necessary to set up a transistional contact with a BOOL array, use the BOOL array to
energize another boolean coil. Then use this boolean for the transistional contact as shown in the
example below.

BOOL(X) BOOL-X

0

BOOL-X

P------

BOOL-X

N ___-_--

BSIT,

DATA

.

DSli?

EXPT

Enter the number of booleans (up to 999).
*It is very important that the value in BSIZ and the size of the array in BOOL are the
same. The size is user adjustable from 2 to 999 elements.
The DATA input is used to specify the name of the main data area. Queries to a
slave device for data items 40001 to 49999 are placed here.
For example, if the array of integer variables is called DAT and a read request is
made for register 40005, the PiC900 would place the data it received in response in
DAT(4).
This data area is an array of integers.
Enter the number of integers (up to 999).

*It is very important that the value in DSIZ and the size of the array in DATA are the
same. The size is user adjustable from 2 to 999 elements.
The EXPT input is an array of eight booleans. If the PiC900 asks a remote station
for the exception status (function 7), its response will be placed in this array. The
bits in this array have no special meaning in the PiC900. But they have special
meaning in a Modicon Control and are provided here to allow the PiC900 to read
them.

16 Modbus

ASCI Controllers can be setup to communicate on Modbus networks using either of two
transmission modes: ASCII or RTU. You select the desired mode at this ASCI
input. If ASCI input is set, then the ASCII mode is in effect. If it is not set, then the
RTU mode is in effect. More information on these two modes can be found in your
Modbus manual.
NOTE: The mode and serial parameters must be the same for all devices on the
network. The modes define the bit contents of message fields transmitted serially on
the network. They determine how information will be packed into the message
fields and decoded.

The ASCII Mode

When controllers are setup to communicate on a network using ASCII mode, each 8-
bit byte in a message is sent as two ASCII characters.

The format for each byte in the ASCII mode is:

Coding System Hexadecimal, ASCII characters O-9, A-F
One hexadecimal character contained in each
ASCII character of the message

Bits per Byte 1 start bit
7 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity is used; 2 bits if no parity

Error Check Field Longitudinal Redundancy Check (LRC)

In the ASCII mode, the message frame starts with a ‘colon’ (:) character (ASCII 3A
hex) and ends with a ‘carriage return - line feed’ (CRLF) pair (ASCII OD and OA).

The allowable characters transmitted for all other fields are hexadecimal O-9, A-F.
Networked devices monitor the network bus continuously for the ‘colon’ character.
When one is received, each device decodes the next field (the address field) to find
out if it is the addressed device.

Intervals of up to one second can elapse between characters within the message. If a
greater interval occurs, the receiving device assumes an error has occurred. A typical
message frame is shown below.

Start Address

1 character 2 characters

Function

2 characters

Data

iz characters

LRC check

2 characters

End
2 characters

CRLF

Modbus 17

The RTU Mode

When controllers are setup to communicate on a network using RTU mode, each 8-
bit byte in a message contains two 4-bit hexadecimal characters. The main advantage
of this mode is that its greater character density allows better data throughput than
ASCII for the same baud rate. Each message must be transmitted in a continuous
stream.

The format for each byte in RTU mode is:

Coding System: Hexadecimal, ASCII characters O-9, A-F
One hexadecimal character contained in each
ASCII character of the message

Bits per Byte: 1 start bit
8 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity is used; 2 bits if no parity

Error Check Field: Cyclical Redundancy Check (CR.C-16)

In the RTU mode, the message frame starts with a silent interval of at least 3.5
character times. The first field then transmitted is the device address.

The allowable characters transmitted for all fields are hexadecimal O-9, A-F.
Networked devices monitor the network bus continuously including during the silent
intervals. When the first field is received, each device decodes it to find out if it is
the addressed device.

Following the last transmitted character, a similar interval of at least 3.5 character
times marks the end of the message. A new message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent
interval of more than 1.5 character times occurs before completion of the frame, the
receiving device flushes the incomplete message and assumes that the next byte will
be the address field of a new message.

Similarly, if a new message begins earlier that 3.5 character times following a
previous message, the receiving device will consider it a continuation of the previous
message. This will set an error, as the value in the final CRC field will not be valid
for the combined messages. A typical message frame is shown below.

Start Address
Tl-T2-T3-T4 8 bits

Function
8 bits

Data
n * 8 bits

LRC check End
16 bits Tl-T2-T3-T4

18 Modbus

SEND The SEND input must be energized each time a message is sent to one of the
Modbus s l a v e s .

ADDR The ADDR input specifies the address of the slave device to which messages will be
sent.

FUNC

The range of numbers that this input will accept is 1 to 255 (decimal).
The FUNC input holds the Modbus function code. The function code number
shown in the table below is sent to the Modbus slave device.

Function
Code

01

02

03

04

05

Name of function
Read Coil Status

Read Input Status

Read Holding Registers

Read Input Registers

Force Single Coil

06 Preset Single Register

07 Read Exception Status

15 Force Multiple Coils

16 Preset Multiple
Registers

Description
Reads the ON/OFF status of discrete outputs
in the slave.
Reads the status of the physical inputs (Inputs
10000 to 19999).
Reads the binary contents of holding registers
in the slave.
Reads one or more physical input registers
(Inputs 20000 to 29999).
Forces a single coil to either ON or OFF.
When broadcast, the command forces the
same coil reference in all attached slaves.
Presets a value into a single holding register.
When broadcast, the command presets the
same register reference in all attached slaves.
Reads the contents of eight Exception Status
coils within the slave. These eight coils are
user-defined.
Forces each coil in a sequence of coils to
either ON or OFF. When broadcast, the
function forces the same coil references in all
attached slaves.
Presets values into a sequence of holding
registers. When broadcast, the function
presets the same register references in all
attached slaves.

CNB

LNDX

RNDX

BROD

The CNT input is the number of items to transfer over the Modbus.
The LNDX input is the local index. It is the location in this control where data
received/sent from a slave device will be stored/retrieved.
The RNDX input is the remote index. It is the location in the slave device where
data will be sent/retrieved.
The BROD input is set by you when a broadcast type frame is sent.

Modbus 19

outputs

OK

FAIL

ERR

RCMD

COMP

TERR

CODE

The OK output when energized indicates that the transceiver portion has been
started and is ready for communication. If this output does not energize, check the
FAIL output and the ERR output to identify the problem.
The FAIL output when energized indicates that the transceiver initialization failed.
When this output is energized, the OK will not be energized and an error code will
appear at the ERR output to identify the problem.
The ERR output is 0 if initialization is successful and is z 0 if initialization is
unsuccessful. The error codes that appear at this output are system errors. See
Appendix B in the PiC900 Software Manual for a description of each error.
The RCMD output is a one-shot output that energizes when the PiC900 has received
a query from the master. The information describing the nature of the response will
be placed in the data structure placed at the R input of this function block.
The COMP output energizes when a transfer is complete.
The TERR output energizes when an error in the transaction has occurred.
The CODE output gives the number of the transaction error that has occurred. If the
number is less than 100, the error code has been returned from a slave station via an
exception response. If the number is greater than 99, the error code is local. See the
tables that follow.

The table below contains error codes returned from a Modbus slave and reported at
the CODE output in the form of exception responses. For a complete explanation of
these errors, see your Modicon Modbus Protocol Reference Guide, Appendix A:
Exception Responses.

TERW
Code

1
Name
Illegal function

Illegal data address

Illegal data value

Slave device failure

Acknowledge

6 Slave device busy

7 NA
8 Memory parity error

Description
The function code received in the query is not an allowable
action for the slave.
The data address received in the query is not an allowable
value for the slave.
A value contained in the query data field is not an allowable
value for the slave.
An unrecoverable error occurred while the slave was
attempting to perform the requested action.
The slave has accepted the request and is processing it, but a
long duration of time will be required to do so. This
response is returned to prevent a timeout error from
occurring in the master.
The slave is engaged in processing a long-duration program
command. The master should retransmit the message later
when the slave is free.

The slave attempted to read extended memory, but detected a
parity error in the memory. The master can retry the request,
but service may be required on the slave device.

20 Modbus

TERR
Code
100
101

102

103

104

105 Invalid function

106 Broadcast error

107

108

109

110

The table below contains the error codes that are detected locally the PiC900 and
reported at the CODE output.

Name
CRC error
Address error

Function error

Time-out error

Invalid function

Boolean array size error

Integer array size error

LNDX value error

LNDX value error

Description
The message,from the slave device has failed CRC.
The message from the slave device has an unexpected value
in the address field.
The message from the slave device has an unexpected value
in the function field.
No response message has been received for the slave device
with 350 ms.
The value at the FUNC input is invalid. No functions above
function 16 are currently supported.
The value at the FUNC input is invalid. The function
number is not supported.
The function requested will not support broadcast mode as
defined by Modbus.
The amount of data requested would overflow the boolean
data array defined by the user.
The amount of data requested would overflow the integer
data array defined by the user.
The offset of data requested would overflow the boolean
data array defined by the user. In other words, the location
of the data is too close to the end of the array, given the
amount of data being transferred.
The amount of data requested would overflow the integer
data array defined by the user.

Modbus Master

As a Modbus master, the PiC900 will query a remote device for integer and boolean
data. The C-MODMST function block described above is entered in your
application program one time. It is responsible for all communications to and from
the PiC900 for Modbus support. Enable it every scan. Each input must have the
appropriate variable attached to it.

All data being sent to or retrieved from the PiC900 will have a function code number
associated with it. Although this number has no direct equivalent in the PiC900, it is
used to determine where to place or retrieve data.

All functions that read registors from a remote device will have their response data
placed in the integer array specified at the DATA input. All functions that read
booleans from a remote device will have their response data placed in the boolean
array specified at the BOOL input.

Modbus 21

Modbus master example LDO

The example LDO called C-MASTEX.LDO is included with the software files you
received. If you are creating a new application ladder, open the C-MASTEX.LDO
and use the save AS command to name it whatever your application will be called.

If you want to add the C-MASTEX.LDO to an existing application ladder, you can
use the optional LDOMERGE software to combine them.

Both of these methods produce an application ladder with the software declarations
for the C MODMST function block already entered. You can modify this to fit your
applicat&.

You can also insert the C-MODMST function block into an existing ladder and enter
the software declarations yourself.

Workstation Processor Module Declarations Network Element View

t his’i;nciibn enables the PiC900 to be a Modbus Master over an RS232
connect ion.
It is configured as: Station 1

RTU mode at 9600 baud, Even Parit
8

8 data bits, 1 stop bit
100 booleans have been defined (U iI7 ADJUSTABLE)
100 integers have been defined (USER ADJUSTABLE)

This function will OPEN and CONFIGURE the serial port specified at the PORT
input on the rising edge of the EN00 input. This input should be enabled all
the time, or as long as communication is required (typically all the time).

22 Modbus

HOW TO START A TRANSACTION WITH A SLAVE STATION:
___-_____c--
Each time the SENDMSG contact transition from off to on the C-MODMST function
will use the data at the function’s inputs to build a frame to be sent to a
slave station. Once sent it will wait up to 350 milliseconds for a response.
During this time period, no additional requests will be processed. Once the
response data has been received and decoded the COMP output will be energized
to indicate that the transaction is complete. If a problem occurs during the
transaction, and the transfer fails, the FAIL output will be energized and
an error code will appear at the ERR output to indicate what the problem is.

NOTE: If this Modbus Master ASFB is going to be used over the USER port on the
CPU module and the port needs to be configured for any setup other than
8 data bits, No parity, 1 Stop bit, it will be necessary to have version
11 or higher system eproms in the CPU. If the Serial Communications

Module
is being used this is not necessary.

100 DSIZ
-I

:ind'bi'Module>

MOD-ERR
TRANCOMP
-w-+
TRANSERR
---(Sk---/

-ERRCODE

Modbus 23

MOD-OK
;;;B&

EXCEPT
SENDMSG
DESTADDR
FUNCTION

The software declarations table for the example is shown below. You can modify it
to fit your application.

Type I/O Pt
<fb>C-MODMST

. = I n i t . Val.=Long N a m e -- T o p
Modbus\Master\Driver

BOOL(O..99) Booleans:\On Modbus\OOOOl to 00999
INT(0. .99)
STRIN$l51 USER:$OO

Integers: \On Modbus\ to 40999
Serial\Port\Name\

Sg;TR;Nlrr[l51

iFL
m&(0.. 7)

USINT
USINT

iii:
UINT

E

Ei:
INT
void

es at trIIend-table
Al t-M modifi

9600,E,8,1, Serial\Port\Configure\String
Function\Initialize\OK
Function\Init\Failure
Function\Init\Error\Code
User\Definable\Exception\Status
Start\a Modus\Transaction
Destination\Address\of Slave\Device
Modbus\Function\Number
Number of\Words or\Bools to\transfer
Local\Index into\data area
Remote\(slave)\index into data area
Set to\enable\BROACCAST type mess
Set to\Enable\ASCII mode
Energizes\When a\transfer completes
Energizes\When a\transfer f a i l s
Failed\Transfer\Error\Code

ibute=Press FlO to exit=Alt-E enters field=Bottom

24 Modbus

C-MODMST function block setup

The steps for setting up the C-MODMST function block allowing the PiC900 to
function as a Modbus master follows.

1.
2.

3.

4.
5.

6.

7.

8.

9.
10.

Determine the address for the slave device and enter it at the ADDR input.
Determine which serial port is going to be used for the Modbus
communications. If the USER port is going to be used, initialize a string type
variable as follows:
PORTADDR STRING(lO) “USER:$OO”
Determine the proper communications configuration for the serial port. Then
assign a string type variable an Initial Value that when placed at the
PORTCFG input will configure the communications channel. See the CFGZ
input on the CONFIG function in the PiC900 Software Manual for more
information on the configuration string.

ASCII Example: For 9600 baud, Even parity, 7 data bits, 1 stop bit,
CONFIG STRING(15) “9600,E,7,2,N,$OO”

RTU Example: For 19200 baud, Even parity, 8 data bits, 2 stop bit
CONFIG STRING(15) “l92OO,E,S,l,N,$OO”

Determine how many booleans (bit type) will be needed for your application.
Modify the size of the BOOLS array in the software declaration table by
setting it to the size determined in step 4. In the software declarations table,
place the cursor on the data item named BOOLS and press <Ah> A to enter
the array length. The acceptable range is from 2 to 999.
The size of the boolean array (BOOLS) must be entered in BSIZ(boolean
size).
Determine how many integers will be needed for your application. The
acceptable range is from 1 to 999.
Modify the size of the INTEGER array in the software declaration table by
setting it to the size determined in step 7. In the software declarations table,
place the cursor on the data item named INTEGER and press <Ah> A to enter
the array length.
The size of the integer array (INTEGER) must be entered in DSIZ (data size).
Determine whether ASCII or RTU mode will be used and set the ASCI input
accordingly.

Modbus 25

Communi-
cations

C-MODSLV-

Modbui !EN OK

slave -ADDR FAIL

-PORT ERR

-CFG RCMC

- BOOL

-BSIZ

-DATA

- DSIZ

-EXPTR
ASCI

I-

I-

Inputs: EN (BOOL) - enables execution
ADDR (USINT) - address for the PiC900 (range from
l-255)
PORT (STRING) - identifies the communication serial
PO*
CFG (STRING) - configuration string for the port
BOOL (ARRAY OF BOOL) - boolean data area
BSIZ (UINT) - size of the BOOL data area
DATA (ARRAY OF INT) - variable data area
DSIZ (UINT) - size of the DATA area
EXPT (ARRAY OF BOOL) .- booleans read by the read
exception status code (07)
R (STRUCT) - message information including address
and function code
ASCI (BOOL) - selects ASCII mode if set; selects RTU
mode if not set

outputs: OK (BOOL) - execution completed without error
FAIL (BOOL) - initialization failed
ERR (INT) - 0 if initialization is successful; f 0
if initialization is unsuccessful
RCMD (BOOL) - energized if a message is received

The C-MODSLV function block provides PiC900 communication capabilities on a
Modbus network. The link to the network must be made through one of the PiC900
serial ports.
When this function is enabled, it will open the PiC900 serial port specified at the
PORT input. This port will be configured based on the information specified at the
CFG input. If the port configures properly, the OK output will energize and the
system will be ready to respond to queries from the Modbus master. If a problem
occurs in the open or configuration process, the FAIL output will be energized and
the OK will not be set. See Appendix B in the PiC900 software manual for the error
codes at the ERR output.
To establish communications on the Modbus network, this function block is needed
only once and should be enabled every scan.

26 Modbus

Inputs

EN The EN input is energized every scan to respond to a query over the Modbus
network.
rail.

In a typical system, this input will be wired to the vertical or power bus

ADDR

PORT

NOTE: De-energizing this input will cause communication to stop.
The ADDR input specifies the address this PiC900 will be on the network. This
input must have a unique number which represents the PiC900 address.
The range of numbers that this input will accept is 1 to 255 (decimal).
-The PORT input specifies which serial port this function block will use to
communicate over. Place a string type variable at this input that has been initialized
with the name of the port that is to be used.
For example, if the PiC900 User port 2 is being used, initialize a string as:

USER: $00
If one of the channels on the serial communications module is being used, the
variable you enter at the NAMZ input of the ASSIGN function block is the variable
you enter at the PORT input of the C-MODSLV function block.

NAME

ASSIGN

EN OK

COMN FAIL

/

NAMZ ERR

RACK

SLOT

CHAN
AA1044-3991

CFG The string variable at the CFG input holds the initialized configuration string you
will use.
If the ASCII mode is chosen (see ASCI input), then the configuration string would
typically be :

9600, E, 7,2, N, $00
If the RTU mode is chosen (see ASCI input), then the configuration string would
typically be:

9600, E, 8, 1, N, $00

.-

Modbus 27

BOOL The BOOL input is an array that specifies the boolean (bit) data area that is used for
any boolean (bit) transfers. Queries from the master device for data items 00001 to
00999 are found here.
For example, if the array of booleans variable is called BOOL and a query is made
for register 00222, the PiC900 would respond with the data in BOOL(221).
The array size can range from 2 (O..l)to 999 (0..998) booleans.

IMPORTANT
Do not use a positive or negative transistional contact in your LDO with the BOOL array. I

If it is necessary to set up a transistional contact with a BOOL array, use the BOOL array to
energize another boolean coil. Then use this boolean for the transistional contact as shown in the
example below.

BOOL(X) BOOL-X
___-

o-

BOOL-X

BOOL-X

BSIT*

DATA

Enter the number of booleans (up to 999).
*It is very important that the value in size in BSIZ and the size of the array in BOOL
are the same. The size is user adjustable from 2 to 999 elements.
The DATA input is used to specify the name of the main data area. Queries from
the master device for data items 40001 to 40999 are found here.

DSIT*

EXPT

R

For example, if the array of integers variable is called DAT and a query is made for
register 40005, the PiC900 would respond with the data in DAT(4).
This data area is an array of integers.
Enter the number of integers (up to 999).

*It is very important that the value in size in DSIZ and the size of the array in DATA
are the same. The size is user adjustable from 2 to 999 elements.
When the read exception status command is issued by the master device, the values
in this boolean array are returned. The booleans are user-defined.
The R structure specifies a data area that information about the last query is placed.
When a query is received, Modbus function data is placed in the data area specified
by this input. The structure placed at this input must have the format shown below.

28 Modbus

Declared array of structures for R input

ASCI

R STRUCT
.ADDRESS
.FUNCTION Ed:

END-STRUCT

The function codes for the Modbus functions are as follows.

Function
Code

01
Name of function
Read Coil Status

03

05

Read Holding Registers

Force Single Coil

06 Preset Single Register

07 Read Exception Status

15 Force Multiple Coils

16 Preset Multiple
Registers

Description
Reads the ON/OFF status of discrete outputs
in the slave.
Reads the binary contents of holding registers
in the slave.
Forces a single coil to either ON or OFF.
When broadcast, the command forces the same
coil reference in all attached slaves.
Presets a value into a single holding register.
When broadcast, the command presets the
same register reference in all attached slaves.
Reads the contents of eight Exception Status
coils within the slave. These eight coils are
user-defined. .
Forces each coil in a sequence of coils to
either ON or OFF. When broadcast, the
function forces the same coil references in all
attached slaves.
Presets values into a sequence of holding
registers. When broadcast, the function
presets the same register references in all
attached slaves.

Controllers can be setup to communicate on Modbus networks using either of two
transmission modes: ASCII or RTU. You select the desired mode at this ASCI
input. If ASCI input is set, then the ASCII mode is in effect. If it is not set, then the
RTU mode is in effect.
Modbus manual.

More information on these two modes can be found in your

NOTE: The mode and serial parameters must be the same for all devices on the
network. The modes define the bit contents of message fields transmitted serially on
the network. They determine how information will be packed into the message
fields and decoded.

The ASCII Mode

When controllers are setup to communicate on a network using ASCII mode, each 8-
bit byte in a message is sent as two ASCII characters.

The format for each byte in the ASCII mode is:

Modbus 29

Coding System Hexadecimal, ASCII characters O-9, A-F
One hexadecimal character contained in each
ASCII character of the message

Bits per Byte 1 start bit
7 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity is used; 2 bits if no parity

Error Check Field Longitudinal Redundancy Check (LRC)

In the ASCII mode, the message frame starts with a ‘colon’ (:) character (ASCII 3A
hex) and ends with a ‘carriage return - line feed’ (CRLF) pair (ASCII OD and OA).

The allowable characters transmitted for all other fields are hexadecimal O-9, A-F.
Networked devices monitor the network bus continuously for the ‘colon’ character.
When one is received, each device decodes the next field (the address field) to find
out if it is the addressed device.

Intervals of up to one second can elapse between characters within the message. If a
greater interval occurs, the receiving device assumes an error has occurred. A typical
message frame is shown below.

Start Address Function Data LRC check End

1 character 2 characters 2 characters n characters 2 characters
2 characters

CRLF

NOTE: The data field cannot exceed 128 bytes in length.

The RTU Mode

When controllers are setup to communicate on a network using RTU mode, each 8-
bit byte in a message contains two 4-bit hexadecimal characters. The main advantage
of this mode is that its greater character density allows better data throughput than
ASCII for the same baud rate. Each message must be transmitted in a continuous
stream.

The format for each byte in RTU mode is:

Coding System: Hexadecimal, ASCII characters O-9, A-F
One hexadecimal character contained in each
ASCII character of the message

Bits per Byte: 1 start bit
8 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity is used; 2 bits if no parity

Error Check Field: Cyclical Redundancy Check (CRC-16)

In the RTU mode, the message frame starts with a silent interval of at least 3.5
character times. The first field then transmitted is the device address.

The allowable characters transmitted for all fields are hexadecimal O-9, A-F.
Networked devices monitor the network bus continuously including during the silent
intervals. When the first field is received, each device decodes it to find out if it is
the addressed device.

30 Modbus

Following the last transmitted character, a similar interval of at least 3.5 character
times marks the end of the message. a new message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent
interval of more than 1.5 character times occurs before completion of the frame, the
receiving device flushes the incomplete message and assumes that the next byte will
be the address field of a new message.

Similarly, if a new message begins earlier that 3.5 character times following a
previous message, the receiving device will consider it a continuation of the previous
message. This will set an error, as the value in the final CRC field will not be valid
for the combined messages. Atypical message frame is shown below.

Start Address
Tl-T2-T3-T4 8 bits

Functidn
8 bits

Data
n * 8 bits

LRC check End
16 bits Tl-T2-T3-T4

NOTE: The data field cannot exceed 128 bytes in length.

outputs

OK

FAIL

ERR

RCMD

The OK output when energized indicates that the transceiver portion has been
started and is ready for communication. If this output does not energize, check the
FAIL output and the ERR output to identify the problem.
The FAIL output when energized indicates that the transceiver initialization failed.
When this output is energized, the OK will not be energized and an error code will
appear at the ERR output to identify the problem.
The ERR output is 0 if initialization is successful and is # 0 if initialization is
unsuccessful. The error codes that appear at this output are system errors. See
Appendix B in the PiC900 Software Manual for a description of each error.
The RCMD output is a one-shot output that energizes when the PiC900 has received
a query from the master. The information describing the nature of the query will be
placed in the data structure placed at the R input of this function block.

Modbus Slave

As a Modbus slave, the PiC900 will receive and respond to Modbus functions from
other devices but will not initiate any transfers. The C-MODSLV function block
described above is entered in your application program one time. It is responsible for
all communications to and from the PiC900 for Modbus support. Enable it every
scan. Each input must have the appropriate variable attached to it.

All data being sent to or retrieved from the PiC900 will have a code number
associated with it. Although this number has no direct equivalent in the PiC900, it is
used to determine where to place or retrieve data.

The PiC900 will only respond to requests directed at one of the function codes it
supports. Requests made to any other function codes will generate an error response
to the device that made the request.

Modbus 31

Mqdbus slave example LDO

The example LDO called C-MODEX.LDO is included with the software files you
received. If you are creating a new application ladder, open the C-MODEX.LDO
and use the save AS command to name it whatever your applicatron will be called.

If you want to add the C-MODEX.LDO to an existing application ladder, you can
use the optional LDOMERGE software to combine them.

Both of these methods produce an application ladder with the software declarations
for the C MODSLV function block already entered. You can modify this to fit your
applicati6.r.

You can also insert the C-MODSLV function block into an existing ladder and enter
the software declarations yourself.

C-MODEX.LDO

Workstation Processor Module Declarations Network Element View
Commynt Editor: Insert Mode Line: 1 of 19 Col: 1

t his function enables the PiC900 to be a Modbus Slave over an RS232 connection.
It is configured as: Station 1

RTU mode at 9600 baud, Even Parity, 8 data bits, 1 stop bit,
No hardware handshaking
800 booleans have been defined (USER ADJUSTABLE)
400 integers have been defined (USER ADJUSTABLE)

Over Modbus the’Integer array maps into register: 40001 to 40400 and the Boolean
array is accessed over Modbus with bit numbers: 00001 to 00800. Any requests
for data to/from Ixxxx, ~XXXX, or 3xxxx will cause an error response to be
returned from the PiC900 Modbus Slave.

NOTE: If this Modbus Slave ASFB is going to be used over the USER port on the
CPU module and the port needs to be configured for any setup other than
8 data b i ts , No parit

4;
, 1 Stop bit, it will be necessary to have version

11 or later system EP OMs in the CPU. If the Serial Communications Module,
is being used this is not necessary.

32 Modbus

SLVI-
C-MODSLV

-I
RC!l[

BOOLS(0) BOOL

800 BSIZ

iINTEGER(w DATA

400 DSIZ
i

:iiAd’bi’Mbdule>

The software declarations table for the example is shown below. You can modify it
to fit your application.

FName Type I/O Pt .=Init. Val.=Long Name==Top
l/SLVi <f b>C-MODSLV Modbus\Slave\Driver
llBOOLS BOOL(O..799) Booleans:\On Modbus\OOOOl to 00999
l/INTEGER INT(0..399) .AFiRAY...

USER:$OO
Integers:\On Modbus\ to 40999

IIPORTADDR STRING[151 Serial\Port\Name
IIPORTCFG STRINGLISI
l]RCMD STRUCT

9600,E,8,l,N,$OO Serial\Port\Configure\String
Received\Commands\Information\Structurf

II.ADDRESS USINT Address of\Incomming\Command\Frame
ll.FUNCTION USINT Function\Number of Incoming\Command

I/MOD-OK
END-STRUCT
BOOL

[IMOD-FAIL BOOL
IJMOD-ERR INT
I/MOD-MSG BOOL
IIEXCEPT BOOL(O..7) User\Definable\Exception\Status
I/end-table void
II
Wit-M modifies attribute=Press FIO to exit--Alt-E enters field=Bottom

Modbus 33

C-MODSLV function block setup The steps for setting up the C-MODSLV function block
allowing the PiC900 to function as a Modbus slave follows.

1.
2.

Determine the address for the PiC900 and enter it at the ADDR input.
Determine which serial port is going to be used for the Modbus
communications. If the USER port is going to be used, initialize a string type
variable as follows:

3.
PORTADDR STRING(lO) “USER: $00”
Determine the proper communications configuration for the serial port. Then
assign a string type variable an Initial Value that when placed at the
PORTCFG input will configure the communications channel. See the CFGZ
input on the CONFIG function in the PiC900 Software Manual for more
information on the configuration string.

ASCII Example: For 9600 baud, Even parity, 7 data bits, 1 stop bit,
CONFIG STRING(15) “9600 E 7 2 N,$OO”, ,Y,

RTU Example: For 19200 baud, Even parity, 8 data bits, 2 stop bit
CONFIG STRING(15) “192OO,E,S,l,N,$OO”

4.
5.

6.

7.

8.

Determine how many booleans (bit type) will be needed for your application.
Modify the size of the BOOLS array in the software declaration table by
setting it to the size determined in step 4. In the software declarations table,
place the cursor on the data item named BOOLS and press <Ah> A to enter
the array length. The acceptable range is from 2 to 999.
The size of the boolean array (BOOLS) must be entered in BSIZ(boolean
s i z e) .
Determine how many integers will be needed for your application. The
acceptable range is from 1 to 999.
Modify the size of the INTEGER array in the software declaration table by
setting it to the size determined in step 7. In the software declarations table,
place the cursor on the data item named INTEGER and press <Ah> A to enter
the array length.

9. The size of the integer array (INTEGER) must be entered in DSIZ (data size).
10. Determine whether ASCII or RTU mode will be used and set the ASCI input

accordingly.

34 Modbus

Index

A
ADDR 18,27
addressing 9
ASCI 1529
ASCII mode 16,29
ASFBs 1

guidelines 1
revising 2, 3
using 4

B
BOOL 1527
BROD 18
BSIZ* 15,27

C
cables 8
CFG 15, 27
CNT 18
CODE 19
codes

Modbus function 9
Modbus master function 18,20,21
Modbus slave function 28

COMP 19
compatibility 9
configurations 5
CPUS 13
C-MODMST function block 7,13

inputs 14
outputs 19

C-MODSLV function block 7, 26
inputs 27

. outputs 31

D
DATA 15,28
directories 11
directory 1
DSIZ* 15,28

E
EN 2,14,27
EPROM

version 32
ERR 19,31
example LDO

master 22
slave 32

EXAMPLES
directory 1

EXPT 15,28

F
FAIL 19,31
files 11
FUNC 18
function blocks

location 12
function codes

Modbus 9
Modbus master 18, 20,21
Modbus slave 28

G
guidelines

ASFBs 1

H
hardware requirements 8

I
installation 1, 11
interface devices 6

L
ladder

source 2
LDO

master example 22
slave example 32

LDO files 1
LIB files 1
LNDX 18

M
Modbus 5

function codes 9
master example 22
master function codes 18,20,21
protocol 5, 6
slave example 32
slave function codes 28

mode
ASCII 16,29
master 21

setup 25
RTU 16,30
slave 31

setup 34

0
OK 19,31

Index i

P S
SEND 18
software declarations 24,33
software requirements 9
source ladder 2

pinouts 8
PORT 14,27
ports 5,8

Q -I
Query 7
query response cycle 6

R
R 28

structure 28
RCMD 19,31
Response 7
revising ASFBs 2, 3
RNDX 18
RQ2
RTU mode 16,30

T
TERR 19
transitionals 16,28

V
version numbers 2

w
wiring 8

Ii Index

